Algebraic surface: Difference between revisions
Jump to navigation
Jump to search
imported>David Lehavi (more detailed sketch) |
imported>Subpagination Bot m (Add {{subpages}} and remove any categories (details)) |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
An '''algebraic surface''' over a [[field]] <math>K</math> is a two dimensional algebraic variety over this field. | An '''algebraic surface''' over a [[field]] <math>K</math> is a two dimensional algebraic variety over this field. | ||
Line 23: | Line 25: | ||
*E. Bombieri and D. Mumford ''Enriques' classification of surfaces in char. <math>p</math>''; part I in ''Global analysis'', Princeton university press. Part II in ''complex analysis and algebraic geometry'', Cambridge university press. Part III in ''Invent Math''. 35. | *E. Bombieri and D. Mumford ''Enriques' classification of surfaces in char. <math>p</math>''; part I in ''Global analysis'', Princeton university press. Part II in ''complex analysis and algebraic geometry'', Cambridge university press. Part III in ''Invent Math''. 35. | ||
*P. Griffithis and J. Harris ''Principles of Algebraic Geometry''. Chapter 4 | *P. Griffithis and J. Harris ''Principles of Algebraic Geometry''. Chapter 4 | ||
Revision as of 10:00, 24 September 2007
An algebraic surface over a field is a two dimensional algebraic variety over this field.
Examples
Classification
Invariants
- classical invariants
- the KOdiara dimension
The Picard group and intersection theory
- intersection product
- various forms of Riemann Roch
- kodaira dimension
Negative Kodaira dimension
Kodaira dimension 0
Kodaira dimension 1
General type
Positive characteristics
References
- W. Barth, C. Peters, and A. Van de Ven Compact Complex Surfaces
- A. Beauville Complex algebraic surfaces ISBN 0521498422
- E. Bombieri and D. Mumford Enriques' classification of surfaces in char. ; part I in Global analysis, Princeton university press. Part II in complex analysis and algebraic geometry, Cambridge university press. Part III in Invent Math. 35.
- P. Griffithis and J. Harris Principles of Algebraic Geometry. Chapter 4