Citizendium - a community developing a quality comprehensive compendium of knowledge, online and free. Click here to join and contribute—free
CZ thanks our previous donors. Donate here. Treasurer's Financial Report -- Thanks to our content contributors. --


From Citizendium
(Redirected from Half life)
Jump to: navigation, search
This article is a stub and thus not approved.
Main Article
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.
This article is about decomposition. For other uses of the term Half-life, please see Half-life (disambiguation).

For any reactant subject to first-order decomposition, the amount of time needed for one half of the substance to decay is referred to as the half-life of that compound. Although the term is often associated with radioactive decay, it also applies equally to chemical decomposition, such as the decomposition of azomethane (CH3N=NCH3) into methane and nitrogen gas. Many compounds decay so slowly that it is impractical to wait for half of the material to decay to determine the half-life. In such cases, a convenient fact is that the half-life is 693 times the amount of time required for 0.1% of the substance to decay. Using the value of the half-life of a compound, one can predict both future and past quantities.


The future concentration of a substance, C1, after some passage of time T, can easily be calculated if the present concentration, C0, and the half-life, Th, are known:

For a reaction is the first-order for a particular reactant, A, and first-order overall, the chemical rate constant for the reaction, k, is related to the half-life Th by this equation: