Origin of life/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
(→‎Books: add item)
imported>Anthony.Sebastian
(→‎Journal articles: add biblio item)
Line 30: Line 30:


*[http://discovermagazine.com/2005/jan/fifth-element-from-meteors/ 92: Life's Fifth Element Came From Meteors]
*[http://discovermagazine.com/2005/jan/fifth-element-from-meteors/ 92: Life's Fifth Element Came From Meteors]
*Morowitz,H.J.; Srinivasan,V.; Smith,E. (2010) [https://vpn.ucsf.edu/cgi/content/abstract/219/1/,DanaInfo=www.biolbull.org+1 Ligand field theory and the origin of life as an emergent feature of the periodic table of elements]. ''Biological Bulletin'' 219:1-6.
**Abstract: The assumption that all biological catalysts are either proteins or ribozymes leads to an outstanding enigma of biogenesis-how to determine the synthetic pathways to the monomers for the efficient formation of catalytic macromolecules in the absence of any such macromolecules. The last 60 years have witnessed chemists developing an understanding of organocatalysis and ligand field theory, both of which give demonstrable low-molecular-weight catalysts. We assume that transition-metal-ligand complexes are likely to have occurred in the deep ocean trenches by the combination of naturally occurring oceanic metals and ligands synthesized from the emergent CO(2), H(2), NH(3), H(2)S, and H(3)PO(4). We are now in a position to investigate experimentally the metal-ligand complexes, their catalytic function, and the reaction networks that could have played a role in the development of metabolism and life itself


==Blogs==
==Blogs==

Revision as of 23:06, 5 September 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
Video [?]
Signed Articles [?]
 
A list of key readings about Origin of life.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

Books

  • Oparin AI. (1953) The Origin of Life. New York: Dover Publications.
  • Oparin AI, Synge A. (1957) The Origin of Life on the Earth. New York: Academic Press Inc..
  • Cairns-Smith AG. (1990) Seven Clues to the Origin of Life: A Scientific Detective Story. New York: Cambridge University Press, ISBN 13-978-0-521-39828-2; 10-0-521-39828-2.
  • Rosen R. (1991) Life Itself: A Comprehensive Inquiry Into The Nature, Origin, And Fabrication Of Life. New York: Columbia University Press, ISBN 0-231-07565-0.


  • Brack A. (1998) The molecular origins of life: assembling pieces of the puzzle. Cambridge: Cambridge University Press, ISBN 0521564123.
  • Smith JM, Szathmary E. (1999) The Origins of Life: From the Birth of Life to the Origin of Language. New York: Oxford University Press.
  • Kauffman SA. (2000) Investigations. Oxford: Oxford University Press, ISBN 019512104X (cloth : acid-free paper).
  • Ganti T, Griesemer Jc, Szathmary Ec. (2003) The Principles of Life. New York: Oxford University press, ISBN 9780198507260.
  • Hazen RM. (2005) Genesis: The Scientific Quest for Life's Origin. Washington,DC: Joseph Henry Press, ISBN 0309094321.

Journal articles

Abstract: Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer.

  • Morowitz,H.J.; Srinivasan,V.; Smith,E. (2010) Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. Biological Bulletin 219:1-6.
    • Abstract: The assumption that all biological catalysts are either proteins or ribozymes leads to an outstanding enigma of biogenesis-how to determine the synthetic pathways to the monomers for the efficient formation of catalytic macromolecules in the absence of any such macromolecules. The last 60 years have witnessed chemists developing an understanding of organocatalysis and ligand field theory, both of which give demonstrable low-molecular-weight catalysts. We assume that transition-metal-ligand complexes are likely to have occurred in the deep ocean trenches by the combination of naturally occurring oceanic metals and ligands synthesized from the emergent CO(2), H(2), NH(3), H(2)S, and H(3)PO(4). We are now in a position to investigate experimentally the metal-ligand complexes, their catalytic function, and the reaction networks that could have played a role in the development of metabolism and life itself

Blogs