Hall-Littlewood polynomial: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (remove WPmarkup; subpages)
imported>Meg Taylor
(move links to subgroup)
Line 8: Line 8:
* {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }}
* {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }}
* {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }}
* {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }}
==External links==
*{{MathWorld |title=Hall-Littlewood Polynomial |urlname=Hall-LittlewoodPolynomial}}

Revision as of 04:37, 14 September 2013

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Hall–Littlewood polynomials encode combinatorial data relating to the representations of the general linear group. They are named for Philip Hall and Dudley E. Littlewood.

See also

References

  • I.G. Macdonald (1979). Symmetric Functions and Hall Polynomials. Oxford University Press, 101-104. ISBN 0-19-853530-9. 
  • D.E. Littlewood (1961). "On certain symmetric functions". Proc. London Math. Soc. 43: 485-498.