Hall-Littlewood polynomial: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch m (remove WPmarkup; subpages) |
imported>Meg Taylor (move links to subgroup) |
||
Line 8: | Line 8: | ||
* {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | * {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | ||
* {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }} | * {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }} | ||
Revision as of 04:37, 14 September 2013
In mathematics, the Hall–Littlewood polynomials encode combinatorial data relating to the representations of the general linear group. They are named for Philip Hall and Dudley E. Littlewood.
See also
References
- I.G. Macdonald (1979). Symmetric Functions and Hall Polynomials. Oxford University Press, 101-104. ISBN 0-19-853530-9.
- D.E. Littlewood (1961). "On certain symmetric functions". Proc. London Math. Soc. 43: 485-498.