NOTICE: Citizendium is still being set up on its newer server, treat as a beta for now; please see here for more.
Citizendium - a community developing a quality comprehensive compendium of knowledge, online and free. Click here to join and contribute—free
CZ thanks our previous donors. Donate here. Treasurer's Financial Report -- Thanks to our content contributors. --

NMR spectroscopy/Catalogs/Nuclear Magnetic Resonance spectroscopy experiments

From Citizendium, the Citizens' Compendium
Jump to: navigation, search

Nuclear Magnetic Resonance experiments can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on. This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.

These experiments have been separated into those generally used for solution Nuclear Magnetic Resonance (NMR) spectroscopy, magnetic resonance imaging spectroscopy (MRI) and solid-state NMR spectroscopy.

Atom notation key

Atom NameDescription
Calpha carbon of current amino acid
Calpha carbon of the previous amino acid
Cbeta carbon of current amino acid
Cbeta carbon of the previous amino acid
COcarbonyl carbon of the current amino acid
CO-1carbonyl carbon of the previous amino acid
Cany carbon of the previous amino acid
Halpha proton of current amino acid
Halpha proton of the previous amino acid
HNamide proton
NHamide nitrogen
Hany proton of the current amino acid
Hany proton of the previous amino acid

NMR experiments - solution

NMR Experiment NameAtoms Observed Common UseWeaknessesReference(s)
APT 13C separate C, CH, CH2 and CH3 carbon detection Patt & Schoolery [1]
BEST Decoupling scheme Excellent Decoupling scheme none Zhang & Gorenstein[2]
BIRD Decoupling scheme BIlinear Rotation Decoupling - Garbow, Weitekamp & Pines[3]
CBCA(CO)NH HN, NH, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [4]
CBCANH HN, NH, C, C, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [5]
CHIRP Adiabatic Decoupling scheme linear for wide sweep width See Kupce & Freeman[6] and references therein
COSY Hi, Hi-1, Hi+1 Correlate neighboring protons signal overlap Aue et al[7] and Bax and Freeman[8]
COLOC 1H & 13C COrrleation via LOng-range Coupling - Kessler et al.[9]
DEPT (13C-DEPT) 13C Differentiate CH, CH2 and CH3 don't observe quaternary 13C Bendall, Doddrell & Pegg [10]
DIPSI Decoupling/Spin-lock scheme decoupling or TOCSY Shaka, Lee & Pines [11]
Double WURST Decoupling scheme Removes Bloch-Seigert Shifts Zhang & Gorenstein [12]
DQF-COSY see COSY Reduces diagonal peaks - Piantini, Sorensen & Ernst [13]
GARP Decoupling scheme Better than MLEV & WALTZ worse than adiabatic (WURST) Shaka, Barker & Freeman [14]
HACAHB H, C, H Selective COSY water signal overlaps some H Grzesiek et al. [15]
HBHA(CO)NH HN, NH, H, H Previous alpha/beta protons Hn exchange Grzesiek & Bax [16]
HBCBCACOCAHA H, C, C, CO Protein NMR assignments 13C relaxation Lewis Kay [17]
HBCBCACONNH H, C, C, NH+1, HN+1 Protein NMR Assignments Hn exchange Grzesiek and Bax [4]
(HB)CB(CGCD)HD C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [18]
(HB)CB(CGCDCE)HE C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [18]
(HCA)CO(CA)NH HN, NH, CO, CO-1 Protein NMR assignments Hn exchange Lohr and Ruterjans[19]
HCACOCAN CO, C, H, HN, HN+1, NH, NH+1 Protein NMR assignments Hn exchange Lohr and Ruterjans [19]
HCAN H, C, NH, NH+1 Protein NMR Assignments water signal overlap Powers et al. [20]
HCCH_TOCSY (Hi-Ci) ---> H Assign entire spin systems signal overlap, 13C relaxation Clore & Gronenborn [21]
H(CCO)NH HN, NH, H Proteins: correlate proton spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [22]
(H)C(CO)NH HN, NH, Cx-1 Proteins: correlate carbon spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [22]
HETCOR Hi, Ci similar to HSQC carbon detection -
HMBC Hi, Cj,k,l,m long-range C-H correlations, aromatic ring assignments low signal, weak J couplings used Bax & Summers [23]
HMQC Hi, Ci heteronuclear multiple quantum coherence - L. Mueller[24]
HNCA HN, NH, C, C Sequential alpha carbons weak Ca-1, Hn exchange Kay, Ikura, Tschudin & Bax [25]
HNCACB HN, NH, C, C, C, C Sequential alpha/beta carbons weak C,C signals, Hn exchange Wittekind & Mueller [26]
HN(CA)COHN, NH, CO, CO-1 Sequential carbonyl carbons weak CO-1 signals, Hn exchange Yamazaki, Lee, et al. [27]
HN(CA)HA HN, NH, H, H Sequential alpha protons H overlap and water signals Kay et al. [28]
HN(C)N HN,NH, NH-1 Amide to previous nitrogen Hn exchange Panchal, Bhavesh & Hosur [29]
HN(CA)NNH NH, HN, NH-1, NH+1 Sequential Protein amide groups 13C relaxation, HN exchange Weisemann, Ruterjans & Bermel [30]
H(NCA)NNH NH, HN, HN-1,HN+1 Sequential Protein amide groups weak CO-1 signals, Hn exchange Weisemann, Ruterjans & Bermel[30]
HNCO HN, NH, CO-1 Carbonyl carbon assignments Hn exchange Ikura, Kay & Bax [31]
HN(CO)CA HN, NH, C Assign previous alpha carbon Hn exchange Yamazaki, Lee, et al.[27]
HN(CO)CACB HN, NH, C, C Previous alpha/beta carbons Hn exchange -
HN(COCA)CB HN, NH, C Previous beta carbons Hn exchange Wittekind & Mueller [26]
(HN)CO(CO)NH HN, NH, CO, CO-1 Previous alpha/beta carbons C relaxation Bax & Grzesiek[32]
HN(CO)HAHN, NH, HPrevious alpha proton Hn exchange -
HN(CO)HB HN, NH, H CO-H coupling Hn exchange Grzesiek, Ikura et al. [33]
HNHA HN, NH, H alpha protons & -backbone angles water peak Vuister & Bax [34]
HNHB HN, NH, H, H (N-H J-coupling) Hn exchange Archer et al. [35]
HNHHN(i,i-1,i+1), NH(i,i-1,i+1)Sequential beta protons & backbone anglesweak Ca/Cb-1 signals, Hn exchange -
HNN HN,NH, NH-1, NH+1 Amide to sequential nitrogens Hn exchange Panchal, Bhavesh & Hosur [29]
HSQC Hi, Xi Correlate heteroatom and attached proton very sensitive Bodenhausen & Ruben,[36]John, et al.[37] & Kay et al.[38]
INADEQUATE incredible natural abundance double quantum transfer experiment - - Bax, Freeman & Frenkiel[39]
INEPT insensitive nuclei enhanced by polarization transfer part of many modern NMR expts. - Morris & Freeman[40]
LRCC Methionine C/H---> C and C Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[41]
LRCH Methionine C/H---> H Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[41]
MLEV 1rst Decoupling scheme removes J coupling sensitive to phase imperfections Levitt, Freeman & Frenkiel[42]
NOESY Hi, Hx 1H-1H distance structure determinations Jeener et al.,[43] Kumar, Ernst & Wuthrich[44] and Macura & Ernst[45]
ROESY Hi, Hx 1H-1H distance rotating frame, works for small molecules Bothner-By et al.[46] and Hwang & Shaka[47][48]
TOCSY Hi----> H Assign entire H1 spin systems signal overlap Braunschweiler & Ernst, [49] and Bax & Davis[50]
WALTZ Decoupling scheme weak on the edges A.J. Shaka et al. [51],[52]
WATERGATE Protons Solvent suppression - Piotto, Saudek & Sklenar [53]
WURST Decoupling scheme See Kupce & Freeman[54] and references therein

NMR experiments - Magnetic Resonance Imaging (MRI)

MRI Experiment NameFull Name Common UseReference(s)
BOLD (BOLD-fMRI)Blood Level Oxygen Dependent a technique more than a sequenceTurner et al. [55]
CSSIChemical Shift Selective Imaging (or MRS) Selective Excitation
DIFRADDiffusion-weighted Radial Acquisition of Data [56]
EPI Echo Planar Imaging functional brain imaging
FLASHFast Low Angle Shot Imaging fast functional imaging
GREGradient Echo Imaging improved MRI
Spin Echoor Spin Warp Basic MRI
STEAMStimulated Echo Imaging -

NMR experiments - solid-state

Many solid state experiments are similar to the liquid state experiments, but the sample is spun off axis at the "magic angle". Thus, many of the experiments listed under the solution NMR section can be done in the solid, and have names like MAS-HSQC, MAS-NOESY and so on.

Solid State Experiment NameFull Name Common UseReference(s)
CRAMPSCombined Rotation And Multiple Pulse Spectroscopy -
HRMASHigh Resolution Magic Angle Spinning a part of many experiments
MASMagic Angle Spinning a part of many experiments
REDORRotational Echo Double Resonance -
XPOLARCross Polarization Pines, Gibby & Waugh[57]

Further reading

  • "NMR of Proteins and Nucleic Acids", Kurt Wuthrich, John Wiley & Sons, New York, N.Y., 1983.
  • "Modern NMR Spectroscopy: A Guide for Chemists", Jeremy K.M. Saunders and Brian K. Hunter, Oxford University Press, Oxford, 1987.
  • "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Richard R. Ernst, Geoffrey Bodenhausen and Alexander Wokaun, Clarendon Press, Oxford, 1987. (Heavy on Quantum mechanics, not for the faint of heart!)
  • "The Theory of Decoupling", J. S. Waugh, J. Magn. Reson. 1982, volume 50, page 30.


  1. Patt, S.L. & Schoolery, J.N. (1982). "Attached Proton Test for Carbon-13 NMR". J. Magn. Reson. 46: 535-539.
  2. Zhang, S. & Gorenstein, D.G. (1999). "BEST Homonuclear Adiabatic Decoupling for 13C- and 15N-Double-Labeled Proteins". J. Magn. Reson. 138: 281-287.
  3. Garbow, J.R., Weitekamp, D.P. & Pines, A. (1982). "Bilinear Rotation Decoupling of Homonuclear Scalar Interactions". Chem. Phys. Lett. 93: 504-508.
  4. 4.0 4.1 Grzesiek, S. & Bax, A. (1992). "Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR". J. Am. Chem. Soc. 114: 6291-6293.
  5. Grzesiek, S. & Bax, A. (1992). "An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins". J. Magn. Reson. 99: 201-207.
  6. Kupce, E. & Freeman, R. (1996). "Optimized adiabatic pulses for wideband spin inversion". J. Magn. Reson. Series A 118: 299-303.
  7. Aue, W.P., Bartholdi, E. and Ernst, R.R. (1975). "Two-dimensional spectroscopy. Application to nuclear magnetic resonance". J. Chem. Phys. 64: 2229-2246.
  8. Bax, A. & Freeman, R. (1981). "Investigation of complex networks of spin-spin coupling by two-dimensional NMR". J. Magn. Reson. 44: 542-561.
  9. Kessler, H., Griesinger, C., Zarbock, J. and Loosli, H.R. (1984). "Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC)". J. Magn. Reson. 57: 331-336.
  10. Bendall, M.R., Doddrell, D.D. & Pegg, D.T. (1981). "Editing of carbon-13 NMR spectra. 1. A pulse sequence for the generation of subspectra". J. Am. Chem. Soc. 103: 4603-4605.
  11. Shaka, A.J., Lee, C.J. & Pines, A. (1988). "Iterative Schemes for Bilinear Operators - Application to Spin Decoupling". J. Magn. Reson. 77: 274.
  12. Zhang, S. & Gorenstein, D.G. (1996). "“Double-WURST” Decoupling for 15N- and 13C-Double-Labeled Proteins in a High Magnetic Field". J. Magn. Reson. Series A 123: 181-187.
  13. Piantini, U., Sorensen, O.W. & Ernst, R.R. (1982). "Multiple quantum filters for elucidating NMR coupling networks". J. Am. Chem. Soc. 104: 6800-6801.
  14. Shaka, A.J., Barker, P.B. & Freeman, R. (1985). "Computer-optimized decoupling scheme for wideband applications and low-level operation". J. Magn. Reson. 64: 574.
  15. Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. (1995). "Multiple-Quantum Line Narrowing for Measurement of H-H J Couplings in Isotopically Enriched Proteins". J. Am. Chem. Soc. 117: 5312-5315.
  16. Grzesiek, S. & Bax, A. (1993). "Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins". J. Biomol. NMR 3: 185-204.
  17. Kay, L. E. (1993). "Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C/, 13C', and 1H chemical shifts in uniformly 13C-labeled proteins dissolved in water". J. Am. Chem. Soc. 115: 2055-2057.
  18. 18.0 18.1 Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1994). "Two-dimensional NMR experiments for correlating 13C and 1H/ chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings". J. Am. Chem. Soc. 115: 11054-11055.
  19. 19.0 19.1 Lohr, F. and Ruterjans, H. (1995). "A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins". J. Biomol. NMR 6: 189-197.
  20. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991). "Three-dimensional Triple-Resonance NMR of 13C/15N-Enriched Proteins Using Constant-Time Evolution". J. Magn. Reson. 94: 209-213.
  21. Clore, G. M. & Gronenborn, A. M. (1994). "Multidimensional heteronuclear nuclear magnetic resonance of proteins". Meth. Enzymol. 239: 249-363.
  22. 22.0 22.1 Grzesiek, S., Anglister, J. & Bax, A. (1993). "Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-enriched Proteins by Isotopic Mixing of 13C Magnetization". J. Magn. Reson. Series B B101: 114-119.
  23. Bax, A. & Summers, M.F. (1986). "Proton and Carbon-13 assigments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR". J. Am. Chem. Soc. 108: 2093-2094.
  24. L. Mueller (1979). "Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence". J. Am. Chem. Soc. 101: 4481-4484.
  25. Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990). "Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins". J. Magn. Reson. 89: 296.
  26. 26.0 26.1 Wittekind, M. & Mueller, L. (1993). "HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins". J. Magn. Reson., Series B. B101: 201-205.
  27. 27.0 27.1 Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994). "A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity". J. Am. Chem. Soc. 116: 11655-11666.
  28. Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. (1992). "4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods". J. Magn. Reson. 98: 443-450.
  29. 29.0 29.1 Panchal, SC, Bhavesh, NS & Hosur, RV (2001). "Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins". J. Biomol. NMR 20: 135-147.
  30. 30.0 30.1 Weisemann, R., Ruterjans, H. & Bermel, W. (1993). "3d Triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins". J. Biomol. NMR 3: 113-120.
  31. Ikura, M., Kay, L. E. and Bax, A. (1990). "A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin". Biochemistry 29: 4659-4667.
  32. Grzesiek, S. & Bax, A. (1997). "A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins". J. Biomol. NMR 9: 207-211.
  33. Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. (1992). "A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-H J Couplings in Isotopically Enriched Proteins". J. Magn. Reson. 96: 215-221.
  34. Vuister, G.W. & Bax, A. (1993). "Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins". J. Am. Chem. Soc. 115: 7772-7777.
  35. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. (1991). "An Alternative 3D NMR Technique for Correlating Backbone 15N with Side Chain H Resonances in Larger Proteins". J. Magn. Reson. 95: 636-641.
  36. Bodenhausen, G. & Ruben, D.J. (1980). "Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy". Chem. Phys. Lett. 69: 185-188.
  37. John, Plant & Hurd (1993). "Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters". J. Magn. Reson., Series A A101: 113-117.
  38. Kay, Keiffer and Saarinen (1992). "Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity". J. Am. Chem. Soc. 114: 10663-10665.
  39. Bax, A., Freeman, R. & Frenkiel, T.A. (1981). "An NMR technique for tracing out the carbon skeleton of an organic molecule". J. Am. Chem. Soc. 103: 2102-2104.
  40. Morris, G.A. & Freeman, R. (1979). "Enhancement of nuclear magnetic resonance signals by polization transfer". J. Am. Chem. Soc. 101: 760-762.
  41. 41.0 41.1 Bax, A., Delaglio, F., Grzesiek, S. and Vuister, G.W. (1994). "Resonance assignment of methionine methyl groups and 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex". J. Biomol. NMR 4: 787-797.
  42. Levitt, M. H., Freeman, R. & Frenkiel, T. (1983). "Broadband decoupling in high-resolution NMR spectroscopy". Adv. Magn. Reson. 11: 47.
  43. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. (1979). "Investigation of exchange processes by two-dimensional NMR spectroscopy". J. Chem. Phys. 71: 4546-4563.
  44. Kumar, A., Ernst, R.R. & Wuthrich, K. (1980). "A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules". Biochem. Biophys. Res. Commun. 95: 1-6.
  45. Macura, S. & Ernst, R.R. (1980). "Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy". Mol. Phys. 41: 95-117.
  46. Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. and Jeanloz, R.W. (1984). "Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame". J. Am. Chem. Soc. 106: 811-813.
  47. Hwang, T.L. & Shaka, A.J. (1992). "Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy". J. Am. Chem. Soc. 114: 3157-3159.
  48. Hwang, T.L. & Shaka, A.J. (1993). "Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems". J. Magn. Reson. Series B B102: 155-165.
  49. Braunschweiler, L. & Ernst R.R. (1983). "Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy". J. Magn. Reson. 53: 521-528.
  50. Bax, A. and Davis, D. (1985). "MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy". J. Magn. Reson. 65: 355-360.
  51. Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R. (1983). "An improved sequence for broadband decoupling: WALTZ 16". J. Magn. Reson. 52: 335.
  52. Shaka, A.J., Keeler, J. & Freeman, R. (1983). "Evaluation of a new broadband decoupling sequence: WALTZ-16". J. Magn. Reson. 53: 313.
  53. Piotto, M., Saudek, V. and Sklenar, V. (1992). "Gradient-tailored Excitation for Single-quantum NMR Spectroscopy of Aqueous Solutions". J. Biomol. NMR 2: 661.
  54. Kupce, E. & Freeman, R. (1996). "Optimized Adiabatic Pulses for Wideband Spin Inversion". J. Magn. Reson. Series A 118: 299.
  55. Turner R., Le Bihan, D., Mooner, C.T., Despres, D. and Frank, J. (1991). "Echo-planar time course MRI of cat brain oxygenation changes". Magn. Reson. Med. 22: 159-166.
  56. (1999) "High-resolution diffusion imaging with DIFRAD-FSE (diffusion-weighted radial acquisition of data with fast spin-echo) MRI.". Magn. Reson. Med. 42: 11-18.
  57. Pines, A., Gibby, M.G. & Waugh, J.S. (1973). "Proton-enhanced NMR in dilute spins in solids". J. Chem. Phys. 59: 569.