Infrared light

From Citizendium, the Citizens' Compendium
Jump to: navigation, search
This article is a stub and thus not approved.
Main Article
Talk
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and not meant to be cited; by editing it you can help to improve it towards a future approved, citable version. These unapproved articles are subject to a disclaimer.

In physics, infrared (IR) light refers to a non-visible portion of the electromagnetic spectrum ranging from wavelengths of 750 nm to 1 mm. The name infrared comes from Latin infra- meaning below, i.e., infrared has a lower frequency than red in the spectrum.

Various disciplines further subdivide the IR, but there is no consensus on the divisions. They vary from discipline-to-discipline and even widely within a given discipline. The following table shows a typical set of divisions:

Name Acronym Range Representative detectors
Near Infrared NIR 0.7 - 1.4 microns lead sulfide, photomultiplier tube, silicon photodiode
Short-Wave Infrared SWIR 1.4 - 3.0 microns Indium gallium arsenide, lead selenide
Mid-Wave Infrared MWIR 3.0 - 5.0 microns zinc selenide, mercury cadmium telluride
Long-Wave Infrared LWIR 5.0 - 20.0 microns doped silicon, mercury cadmium telluride

Most detectors neede to be cooled below ambient temperature.

Viewing devices

Some, but not all, night vision devices use infrared light. Low-light television may be visible only, or extend into the NIR.

Forward-looking infrared viewing systems work in the LWIR, and, recently, MWIR. Night vision devices often are sensitive into the NIR.

Infrared guidance

Originally, infrared missile guidance depended on the extremely hot signature of a jet or rocket exhaust. Increasingly advanced systems, however, detect the heat on parts of the target heated by atmospheric friction, or simply being warm against a cold sky background.

Anti-ballistic missile terminal guidance often is infrared, as the incoming warhead is extremely hot.