Difference between revisions of "Approximation theory"

From Citizendium
Jump to: navigation, search
m (spelling: simplier -> simpler)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{subpages}}
 
In [[mathematics]], '''approximation theory''' is concerned with how [[Function (mathematics)|functions]] can be best [[approximation|approximated]] with simpler functions, and with quantitatively characterising the [[approximation error|errors]] introduced thereby. What is meant by ''best'' and ''simpler'' will depend on the application.
 
In [[mathematics]], '''approximation theory''' is concerned with how [[Function (mathematics)|functions]] can be best [[approximation|approximated]] with simpler functions, and with quantitatively characterising the [[approximation error|errors]] introduced thereby. What is meant by ''best'' and ''simpler'' will depend on the application.
  
Approximation theory has many applications, especially in [[numerical computation]], [[physics]], [[engineering]] and [[computer science]]. Of particular interest in [[computer science]] is approximating functions in a computer mathematical library, using operations that can be performed on the computer (e.g. addition and multiplication), such that the result is as close to the actual function as possible. This is typically done with polynomial or rational approximations.  
+
Approximation theory has many applications, especially in [[numerical computation]], [[physics]], [[engineering]] and [[computer science]]. There are two main applications of approximations. The first is approximating safisticated functions in a computer mathematical library, using simpler operations that can be performed on the computer (e.g. addition and multiplication), such that the result is as close to the actual function as possible. This is typically done with polynomial or rational approximations. The second is obtaining approximate values of real-world function (known on the grid) between the points of the grid.
 
+
== See also ==
+
*[[function approximation]]
+
*[[approximation]]
+

Latest revision as of 06:40, 14 February 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, approximation theory is concerned with how functions can be best approximated with simpler functions, and with quantitatively characterising the errors introduced thereby. What is meant by best and simpler will depend on the application.

Approximation theory has many applications, especially in numerical computation, physics, engineering and computer science. There are two main applications of approximations. The first is approximating safisticated functions in a computer mathematical library, using simpler operations that can be performed on the computer (e.g. addition and multiplication), such that the result is as close to the actual function as possible. This is typically done with polynomial or rational approximations. The second is obtaining approximate values of real-world function (known on the grid) between the points of the grid.