Sympathetic nervous system

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The sympathetic nervous system is part of the autonomic nervous system has the following functions:

The autonomic nervous system
Blue = parasympathetic
Red = sympathetic
  • Diverts blood flow away from the gastro-intestinal (GI) tract and skin via vasoconstriction.
  • Blood flow to skeletal muscles, the lung is not only maintained, but enhanced (by as much as 1200%, in the case of skeletal muscles).
  • Dilates bronchioles of the lung, which allows for greater alveolar oxygen exchange.
  • Increases heart rate and the contractility of cardiac cells (myocytes), thereby providing a mechanism for the enhanced blood flow to skeletal muscles.
  • Dilates pupils and relaxes the lens, allowing more light to enter the eye.

Molecular biology

The pharmacogenetics of adrenergic beta-antagonist medications have been reviewed.[1]

Adrenergic receptor

For more information, see: adrenergic receptor.

Polymorphisms of the adrenergic receptor may affect clinical outcomes.[2]

Genetic polymorphisms of beta-1 (ADRB1) may affect the response to adrenergic beta-antagonist treatment of heart failure.[3]

Genetic polymorphisms of alpha-2C (ADRA2C) may affect the response to adrenergic beta-antagonist treatment of heart failure.[4]

G-protein-coupled receptor kinase

For more information, see: G-protein-coupled receptor kinase.

Polymorphisms of G-protein-coupled receptor kinase (GRK5) may underlie racial differences in the affect of treatment of heart failure.[5] There is conflicting evidence whether beta-blockers medications are as effective in African-American patients as in Anglo patients.[6] GRK5 may confer a natural "genetic beta-blockade".[7]

G protein–coupled cell surface receptor kinase 2 (GRK2) genetic polymorphisms may also affect the response to adrenergic beta-antagonists.[8]

Genetic polymorphisms of the protein kinase associated with β-2 adrenergic receptors may affect the response in asthma to adrenergic beta-agonists by patients of African descent.[9]

Cytochrome P-450

For more information, see: cytochrome P-450.

Polymorphisms of the cytochrome P-450, such as CYp2D6[10], are eligible for more drug interactions[11][12] and more inherited variation in metabolism[13].[14]

References

  1. Shin J, Johnson JA (June 2007). "Pharmacogenetics of beta-blockers". Pharmacotherapy 27 (6): 874–87. DOI:10.1592/phco.27.6.874. PMID 17542770. Research Blogging.
  2. Zaugg M, Bestmann L, Wacker J, et al (July 2007). "Adrenergic receptor genotype but not perioperative bisoprolol therapy may determine cardiovascular outcome in at-risk patients undergoing surgery with spinal block: the Swiss Beta Blocker in Spinal Anesthesia (BBSA) study: a double-blinded, placebo-controlled, multicenter trial with 1-year follow-up". Anesthesiology 107 (1): 33–44. DOI:10.1097/01.anes.0000267530.62344.a4. PMID 17585213. Research Blogging.
  3. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 109630. World Wide Web URL: http://omim.org/.
  4. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 104250. World Wide Web URL: http://omim.org/.
  5. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 600870. World Wide Web URL: http://omim.org/.
  6. Shekelle PG, Rich MW, Morton SC, et al (2003). "Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials". J. Am. Coll. Cardiol. 41 (9): 1529–38. PMID 12742294[e]
  7. Liggett SB, Cresci S, Kelly RJ, et al. (May 2008). "A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure". Nat. Med. 14 (5): 510–7. DOI:10.1038/nm1750. PMID 18425130. PMC 2596476. Research Blogging.
  8. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 109635. World Wide Web URL: http://omim.org/.
  9. Wang WC, Mihlbachler KA, Bleecker ER, Weiss ST, Liggett SB (August 2008). "A polymorphism of G-protein coupled receptor kinase5 alters agonist-promoted desensitization of beta2-adrenergic receptors". Pharmacogenet. Genomics 18 (8): 729–32. DOI:10.1097/FPC.0b013e32830967e9. PMID 18622265. Research Blogging.
  10. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 124030. World Wide Web URL: http://omim.org/.
  11. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (November 2001). "Potential role of pharmacogenomics in reducing drug-related side effects and adverse reactionss: a systematic review". JAMA 286 (18): 2270–9. PMID 11710893[e]
  12. Weinshilboum R (February 2003). "Inheritance and drug response". N. Engl. J. Med. 348 (6): 529–37. DOI:10.1056/NEJMra020021. PMID 12571261. Research Blogging.
  13. Nozawa T, Taguchi M, Tahara K, et al (November 2005). "Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol". J. Cardiovasc. Pharmacol. 46 (5): 713–20. PMID 16220080[e]
  14. Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: 104250. World Wide Web URL: http://omim.org/.