Quantum mechanics/Timelines

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Timelines [?]
Advanced [?]
 
A timeline (or several) relating to Quantum mechanics.

Founding work

c 1805: Thomas Young's double-slit experiment demonstrating the wave nature of light.
1896: Henri Becquerel discovers radioactivity.
1897: Joseph John Thomson's cathode ray tube experiments (discovers the electron and its negative charge).
1850 - 1900: The study of black body radiation, which gave the unexplainable UV catastrophe.
1900: The study of black body radiation led Max Planck to quantization of energy; full explanation of spectrum, including the ultraviolet (UV).
1905: The photoelectric effect: Explained by Einstein using the concept of photons, particles of light with quantized energy.
1909: Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units).
1911: Ernest Rutherford's gold foil experiment disproved the plum pudding model of the atom which suggested that the mass and positive charge of the atom are almost uniformly distributed.
1913: Niels Bohr's explanation of stationary states of hydrogen atom
1920: Otto Stern and Walther Gerlach conduct the Stern-Gerlach experiment, which demonstrates a doublet nature of spectra, later interpreted as spin.
1924:
1927: Clinton Davisson and Lester Germer demonstrate the wave nature of the electron [1] in the Electron diffraction experiment.
1935: The EPR paper by Einstein and two collaborators points out an important, and previously non-understood implication of quantum mechanics
1955: Clyde L. Cowan and Frederick Reines confirm the existence of the neutrino in the neutrino experiment.
1961: Claus Jönsson`s double-slit experiment with electrons.
1964: J. S. Bell's theorem proves that so-called 'local' theories cannot predict quantum outcomes
1980: The Quantum Hall effect, discovered by Klaus von Klitzing. The quantized version of the Hall effect has allowed for the definition of a new practical standard for electrical resistance and for an extremely precise independent determination of the fine structure constant.
1982: Alain Aspect's group at the University of Orsay confirm Bell's prediction, and prove Einstein was wrong