Linear independence

From Citizendium
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In algebra, a linearly independent system of elements of a module over a ring or of a vector space, is one for which the only linear combination equal to zero is that for which all the coefficients are zero (the "trivial" combination).

Formally, S is a linearly independent system if

A linearly dependent system is one which is not linearly independent.

A single non-zero element forms a linearly independent system and any subset of a linearly independent system is again linearly independent. A system is linearly independent if and only if all its finite subsets are linearly independent.

Any system containing the zero element is linearly dependent and any system containing a linearly dependent system is again linearly dependent.

We have used the word "system" rather than "set" to take account of the fact that, if x is non-zero, the singleton set {x} is linearly independent, as is the set {x,x}, since this is just the singleton set {x} again, but the finite sequence (x,x) of length two is linearly dependent, since it satisfies the non-trivial relation x1 - x2 = 0.

A basis is a maximal linearly independent set: equivalently, a linearly independent spanning set.

Linearly independent sets in a module form a motivating example of an independence structure.

References