User talk:Dmitrii Kouznetsov/Analytic Tetration: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Henryk Trappmann 's theorems==
==Henryk Trappmann 's theorems==
===Theorem T1.===
 
This is approach to the Second part of the Theorem 0, which is still absent in the main text.
 
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
===Theorem T1. (about Gamma function)===
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
Line 7: Line 11:
'''Then''' <math>~F~</math> is the [[gamma function]].
'''Then''' <math>~F~</math> is the [[gamma function]].


===Theorem T2===
'''Proof''', see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)
 
Consider function
<math>~v=F-\Gamma~</math> on the right half plane, it also satisfies equation
<math>~v(z+1)~=~z~v(z)~</math>
Hence,
<math>~v~</math> has a [[meromorphic]] continuation to
<math>~\mathbb{C}~</math>;
and the poles are allowed only at non–positive integer values of the argument.
 
While <math>~v(1)=0~</math>, we have
<math>~\lim_{z\rightarrow 0} z~v(z)=0~</math>,
hence, <math>~v~</math> has a holomorphic continuation to 0 and also to each
<math>~-n~</math>,
<math>~n\in \mathbb{N} </math> by
<math>~v(z+1)=z~v(z)~</math>.
 
In the range
<math>~ 1\le \Re(z) <2 ~</math>,
<math>~v(z)~                  </math> is pounded. It is because function
<math>~ \Gamma ~        </math> is bounded there.
 
Then <math>~v(z)~</math> is also restricted on <math>~\mathbb{S}~</math>,
because <math>~v(z)!</math> and <math>~v(1-z)!</math> have the same values on
<math>~\mathbb{S}~</math>.  Now <math>~q(z+1)=-q(z)~</math>, hence <math>~q~</math> is bounded on whole <math>~\mathbb{C}~</math>, and by the
[[Liouville Theorem]], <math>~q(z)=q(1)=0</math>. Hence, <math>~v=0~</math>
and <math>~F=\Gamma~</math>.
 
(end of proof)
 
===Theorem T2 (about exponential)===
'''Let''' <math>~E~</math> be solution of  
'''Let''' <math>~E~</math> be solution of  
<math>~ E(z+1)=b E(x)~</math>,  
<math>~ E(z+1)=b E(x)~</math>,  
Line 18: Line 52:


'''Proof'''.
'''Proof'''.
We know that every other solution must be of the form  <math>~g(z)=f(z+p(z))~ <math>
We know that every other solution must be of the form  <math>~g(z)=f(z+p(z))~ </math>
where <math>~ p~</math> is a 1-periodic holomorphic funciton.
where <math>~ p~</math> is a 1-periodic holomorphic function.
This can roughly be seen by showing periodicity of <math>~h(z)=f^{-1} (g(z))-z~ </math>.
This can roughly be seen by showing periodicity of
<math>~h(z)=f^{-1} (g(z))-z~ </math>.


<math>~ f(z+p(z))=b^{z+p(z))=b^{p(z)}b^z=b^p(z)f(z)~=q(z)f(z) ~</math>
<math>~ f(z+p(z))=b^{z+p(z)}=b^{p(z)}b^z=b^p(z)f(z)~=q(z)f(z) ~</math>,


where <math>~ q(z)=b^p(z) ~</math> is also a 1-periodic funciton,
where <math>~ q(z)=b^p(z) ~</math> is also a 1-periodic function,


While each of <math>~f~</math> and <math>~g~</math>  is bounded on  
While each of <math>~f~</math> and <math>~g~</math>  is bounded on  
<math>\set S </math>,
<math>~\mathbb{S}~ </math>,
<math>~q~</math>, must be bounded too.
<math>~q~</math>  must be bounded too.


===Theorem T3===
===Theorem T3 (about Fibbonachi)===
'''Let''' <math>~\phi=\frac{1+\sqrt{5}}{2}~</math>. </br>
'''Let''' <math>~\phi=\frac{1+\sqrt{5}}{2}~</math>. <br>
'''Let''' <math>~F(z+1)=F(z)+F(z-1)~</math>
'''Let''' <math>~F(z+1)=F(z)+F(z-1)~</math>
'''Let''' <math>~F(0)=1~</math>
'''Let''' <math>~F(0)=1~</math>
Line 39: Line 74:


'''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]].
'''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]].
===Theorem T4===
 
===Theorem T4 (about tetration)===
====First intent to formulate====
'''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
'''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
'''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions
'''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions
Line 45: Line 82:
:<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br>
:<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br>
'''Then''' <math> ~F_1=F_2~ </math>  
'''Then''' <math> ~F_1=F_2~ </math>  
====Second intent to formulate====
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
(1) '''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> is [[holomorphic function]]
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]</math>,
satisfying conditions
(2) <math> F(0)=1</math>
(3) <math>~\exp_b(F(z))=F(z+1)~</math> for <math>\Re(z)>-2</math>
(4) <math>~F~</math> is bounded on
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R}  \}</math>
'''Then''' <math> ~F_1=F_2~ </math>
====Proof of Theorem T4====
=====Lemma 1=====
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br>
(1) '''Let''' <math>~f~</math> be [[holomorphic function]]
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]~</math>,
such that
(2) <math> f(0)=1</math>
(3) <math>~\exp_b(f(z))=f(z+1)~</math> for <math>\Re(z)>-2~</math>
(4) <math>~f~</math> is bounded on
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R}  \}~</math>
'''Let''' <math>~ \mathbb{D} = ~\{x+\mathrm{i} y|-2<x, y\in \mathbb{R}  \}~</math>
'''Then''' <math>~ f( \mathbb{D} ) = \mathbb{C} ~ </math>
=====Proof of Lemma 1=====
=====Proof of theorem T4=====
'''Henryk, I cannot copypast your proof here: I do not see, where do you use condition'''
<math>~b>\exp( 1/ \mathrm{e} ) </math>
?
From Lemma 1, the ...


'''Discussion'''. Such <math>~F~</math> is unique tetration on the base <math>~b~</math>.
====Discussion====
Such <math>~F~</math> is unique tetration on the base <math>~b~</math>.

Latest revision as of 08:23, 29 September 2008

Henryk Trappmann 's theorems

This is approach to the Second part of the Theorem 0, which is still absent in the main text.

Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458

Theorem T1. (about Gamma function)

Let be holomorphic on the right half plane let for all such that .
Let .
Let be bounded on the strip .
Then is the gamma function.

Proof, see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)

Consider function on the right half plane, it also satisfies equation Hence, has a meromorphic continuation to ; and the poles are allowed only at non–positive integer values of the argument.

While , we have , hence, has a holomorphic continuation to 0 and also to each , by .

In the range , is pounded. It is because function is bounded there.

Then is also restricted on , because and have the same values on . Now , hence is bounded on whole , and by the Liouville Theorem, . Hence, and .

(end of proof)

Theorem T2 (about exponential)

Let be solution of , , bounded in the strip .

Then is exponential on base , id est, .

Proof. We know that every other solution must be of the form where is a 1-periodic holomorphic function. This can roughly be seen by showing periodicity of .

,

where is also a 1-periodic function,

While each of and is bounded on , must be bounded too.

Theorem T3 (about Fibbonachi)

Let .
Let Let Let

Then

Discussion. Id est, is Fibbonachi function.

Theorem T4 (about tetration)

First intent to formulate

Let .
Let each of and satisfies conditions

for
is holomorphic function, bounded in the strip .

Then

Second intent to formulate

(0) Let .

(1) Let each of and is holomorphic function on , satisfying conditions

(2)

(3) for

(4) is bounded on

Then

Proof of Theorem T4

Lemma 1

(0) Let .

(1) Let be holomorphic function on , such that

(2)

(3) for

(4) is bounded on

Let

Then

Proof of Lemma 1
Proof of theorem T4

Henryk, I cannot copypast your proof here: I do not see, where do you use condition



?

From Lemma 1, the ...

Discussion

Such  is unique tetration on the base .