Dicrocoelium dendriticum: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Brian Estevez100
No edit summary
imported>Brian Estevez100
No edit summary
Line 3: Line 3:


{{subpages}}
{{subpages}}
{{Taxobox  
{{Taxobox
| color=violet
| color = pink
| name = Myxoma Virus
| name = ''Pseudomonas putida''
| image = myxoma_virus.jpg
| image =  
| virus_group = Group I dsDNA virus, no RNA stage
| regnum = Eubacteria
| familia = Poxviridae, subfamily: Chordopoxvirinae
| phylum = Proteobacteria
| genus = Leporipoxvirus}}
| classis = Gamma Proteobacteria
| ordo =  Pseudomonadales
| familia = Pseudomonadaceae
| genus = Pseudomonas
| species = putida
| binomial = ''Pseudomonas putida''
| binomial_authority = 
}}


== Classification: ==
==Description and significance==
'''
''Pseudomonas putida'' are [[Gram-negative]] rod-shaped [[bacteria]]. They are classified as Group 1 in ''Pseudomona''. Other ''Pseudomonads'' are being re-evaluated to see if they truly fall into this category, while ''P. putida'' is firmly place in this group. ''P. putida'' are [[flourescent]], [[aerobic]], non sporeforming, oxidase positive bacteria. Having one or more polar [[flagella]], they are motile organisms. They can be found in moist environments, such as soil and water, and grow optimally at room temperature. Certain strains have the ability to grow on and break down many dangerous pollutants and aromatic [[hydrocarbons]] such as toluene, [[benzene]], and ethylbenzene. ''P. putida'' can also be used in petroleum plants to purify fuel. This bacterium is also capable of promoting plant growth after root colonization as well as simultaneously providing protection for the plant from pests and other harmful bacteria.
ICTVdB Virus Code: 00.058.1.05.001. Virus accession number: 58105001. Obsolete virus code: 58.1.5.0.001; superceded accession number: 58150001. NCBI Taxon Identifier NCBI Taxonomy ID: 10273. Type of the genus: 00.058.1.05. [http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/00.058.1.05.htm]poripoxvirus]|Leporipoxvirus subfamily 00.058.1. [Chordopoxvirinae]|[http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/index.htm] in the family 00.058. Poxviridae.]


Viruses: Group I dsDNA viruses, no RNA stage;  Family: Poxviridae;  SubFamily: Chordopoxvirinae;  Genus: Leporipoxvirus
==Genome structure==
The genome of ''Pseudomonas putida'' was sequenced due to the many unique abilities that this bacterium possesses. Scientists are interested in which genes cause what function. So far, ''P. putida'' has the most genes of any microorganism that break down chemicals such as aromatic [[hydrocarbons]]. Research is being done on the difference in genome of ''P. putida'' and its relative ''Pseudomonas aeruginosa'' in relation to cystic fibrosis. While ''P. aeruginosa'' infects and kills those with the disease, ''P. putida'' lacks the genes that causes such destruction, like the genes that code for enzymes that digest [[cell membrane]]s.


'''[[Image:Leporipoxvirus edited.jpg]]
The Pseudomonas putida strain KT2440 [[genome]] was sequenced as a joint project between [[The Institute for Genomic Research]] and a German consortium in 1999. The way that they sequenced the genome was using the random shotgun method. They found that the one circular [[chromosome]] contains 6,181,863 base pairs. The total number of genes is 5,516, with 5,421 being [[protein]] coding. The total number of repeats, or stretches greater than 200 base pairs and almost identical, was 398. Interestingly, there was a high GC content in the genome, which created some difficulty in sequencing through the traditional methods. A significant amount of genes were found to code for enzymes that are used in the decomposition of matter. Most of the other genes are critical for Pseudomonas putida’s ability to recognize and react to external toxins and chemical signals. They also contain multiple accessory plasmids, including TOL and OCT plasmids, that aide the bacterium in breaking down environmental pollutants found in soil and water. Through sequencing the Pseudomonas putida genome, scientists were able to determine the biotechnological potential of the organism.<ref>[http://www1.qiagen.com/literature/Posters/PDF/DNA_isolation/1014161SPOS_SEQ_0400.pdf]</ref>


== Description and significance: ==
==Cell structure and metabolism==
'''
''Pseudomonas putida'' are aerobic oxidase positive bacteria, with one or more flagella. They can be found in moist environments, such as soil and water, and grow at a temperature of 25-30 degrees Celcius. Although ''Pseudomonas putida'' does not form spores, they are still able to withstand harsh environmental conditions. It is able to resist the severe effects of organic solvents that pollute the surrounding soil. In response to changes in its chemical surroundings and to help with membrane fluidity and cellular uptake, it can alter the degree of fatty acid saturation and even undergo cis-trans isomerization. ''P. putida'' are unique saprobes in that use a wide variety of non-living material as their source of nutrition, including multiple types of aromatic [[hydrocarbons]]. This allows them to be agents of bioremediation, one of the most differentiating and impressive features of ''Pseudomonas putida''.
Myxoma virus is a member of the [[Poxviridae]] family. It causes a benign infection in [[rabbits]] of the [[Sylvilagus]] [[genus]], but induces a fatal disease known as [[myxomatosis]] in the European rabbit, [[Oryctalagus cuniculus]]. <ref>Stanford, MM, Barrett, JW, Nazarian, SH, Werden, S and McFadden, G. (2007). Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. Journal of Virology, 81: 1251–1260.</ref>
Myxoma [[virions]] have two types of structures, either enveloped or not, a surface membrane, a core, and lateral bodies. The envelope contains [[lipids]] derived from the host and [[glycolipids]] that are self synthesized. Over the course of its life cycle, myxoma virions produce both extracellular and intracellular particles. They can have two [[phenotypes]] and they can be enveloped during their extracellular phase. The extracellular virions are the ones to initiate viral infection. Myxoma virions may be segregated within [[inclusion bodies]]. They typically contain one enveloped [[nucleocapsid]], are somewhat [[pleiomorphic]], brick–shaped, and measure approximately 250 nm in diameter, 250–300 nm in length, and 200 nm in height. The core is biconcave with two lateral bodies. It lies either between the core membrane or the surface membrane.  Myxoma virions mature by budding through the membrane of the host cell.<ref>Stanford, MM, Werden, SJ and McFadden, G. (2007). Myxoma virus in the European rabbit: interactions between the virus and its susceptible host. Vet Res 38: 299–318</ref>
The Myxoma virus was important enough to have its genome sequenced is because it encodes [[proteins]] designed to circumvent the host's cellular [[immune response]] to the viral infection. This induces extensive [[immunosuppression]] in infected rabbits.<ref>Stanford‌, MM, and McFadden, G. (2007) Myxoma virus and oncolytic virotherapy: a new biologic weapon in the war against cancer. Expert Opinion on Biological Therapy, Vol. 7, No. 9, Pages 1415-1425.</ref>


'''
==Ecology==
''Pseudomonas putida'' has an incomparable effect on the environment. They are able to protect plants from pests, promote plant growth, and clean up organic pollutants found in soil and water.


== Natural Host: ==
The surface of the root and the soil that surrounds it are loaded with nutrients released by the plant. This environment is optimal for microbial growth. ''Pseudomonas putida'' is attracted to this area, and in turn promotes plant growth and even protects the root against pathogens. Two key elements that allow ''P. putida'' to attach in the first place is that they are motile and chemotactic towards the root output. After the initial attraction and migration toward the root, the bacteria immediately begins to grow and divide, forming multiple colonies around the root. The maximum population size is directly related to root weight, and once it is reached the number of colonies will stay constant. All of this can happen in less than 48 hours!
'''  
Domain Eucarya, Kingdom Animalia, Phylum Chordata, Subphylum Vertebrata, Class Mammalia, Order Lagomorphia, purportedly only in Oryctolagus cuniculus, Lepus Europaeus, S. Bachmani, and S. floridanus.  


'''
''Pseudomonas putida'' play a huge role in bioremediation, or the removal or naturalization of soil or water contaminants. They can degrade toluene, xylene, and benzene, which are all toxic components of gasoline that leak into the soil by accidental spills. Other strains can convert styrene, better known as packing peanuts, which do not degrade naturally, into the biodegradable plastic polyhydroxyalkanoate (PHA). Methods used to get rid of styrene include incinerating it, spreading it on land, and injecting it underground, all of which release the toxins into the environment. Styrene can cause muscle weakness, lung irritation, and may even effect the brain and nervous system. Due to the fact that ''P. putida'' can use styrene as its only source of carbon and energy, it can completely remove this toxic chemical.  ''P. putida'' can also turn Atrizine, an herbicide that is toxic to wildlife, into [[carbon dioxide]] and [[water]].
== When was your organism discovered? ==
'''
Myxoma virus was first discovered when it killed imported European rabbits in Guiseppe Sanarelli's lab in Uruguay in 1896 at the Institute of Hygiene in Montivideo. <ref>Stanford, MM, Werden, SJ and McFadden, G. (2007). Myxoma virus in the European rabbit: interactions between the virus and its susceptible host. Vet Res 38: 299–318</ref>


'''
==Pathology==
In genetic terms, ''Pseudomonas putida'' is very similar to strains of ''[[Pseudomonas aeruginosa]]'', an opportunistic human pathogen. Although there is a considerable amount of genome conservation, ''P. putida'' seems to be missing the key virulent segments that ''P. aeroginosa'' has. Being a non-pathogenic bacteria, there has been only a handful of episodes where ''P. putida'' has infected humans. For the most part, it has been with immunocompromised patients, causing septicaemia, [[pneumonia]], urinary tract infections, nosocomial bacteremia, septic [[arthritis]], or [[peritonitis]]. ''P. putida'' is also closely related to ''[[Pseudomonas syringae]]'', an abundant plant pathogen, but again it lacks the gene that causes such disease.


== How and where it was isolated: ==
Several cases of disease caused by ''Pseudomonas putida'' have been investigated, being that the bacterium rarely colonizes mucosal surfaces or skin. One case was a 43-year-old female who was receiving nightly [[peritoneal dialysis]] treatments following a laparoscopic ovarian cyst operation. She developed [[peritonitis]] due to infection by ''Pseudomonas putida''. Through this case and others, it was determined that risk factors for developing such an infection include the insertion of [[catheters]], intubation, and/or intravascular devices following a recent course in [[antibiotics]]. <ref>[http://www.springerlink.com/content/278654l42x54x7k7/ Dervisoglue, E., Dundar, D.O., Yegenaga, I., Willke, A. “Peritonitis due to ''Pseudomonas putida'' in a Patient Receiving Automated Peritoneal Dialysis”. ''Infection''. 2007.]</ref>
'''  
The Lausanne strain of the virus was isolated by a team of Canadian scientists at the Department of Microbiology, The University of Western Ontario, London, Ontario, Canada. However, only a partial sequencing of the California MSW strain was achieved by a team associated with School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australia.  There they cloned EcoRI and SalI restriction fragments of viral DNA and sequenced the ends.<ref>Labudovic, A., Perkins, H. van Leeuwen, B. and Kerr, P. (2004) Sequence mapping of the Californian MSW strain of Myxoma virus. Archives of Virology, Vol. 149, Number 3/March, 553-570.</ref>  
'''


== Genome structure: ==
Another case of ''Pseudomonas putida'' infection was found in ten patients in and ear, nose, and throat outpatient clinic during the summer of 2000. All ten patients had chronic [[sinusitis]], making them more susceptible to infection due to their challenged immune systems. Through investigation, it was discovered that all of the patients shared the same examination room. The source of the bacteria was from a contaminated bottle of StaKleer found in that room. StaKleer is an anti-fog solution used on mirrors and endoscopes to prevent condensation from occurring, allowing  for the proper visualization of tissues. Other unopened bottles of the solution at the clinic were found to be contaminated with ''Pseudomonas putida'' as well.<ref>[http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/00vol26/dr2621eb.html Romney, M., Sherlock, C., Stephens ,G., Clarke, A.. “Pseudo-outbreak of ''Pseudomonas Putida'' in a Hospital Outpatient Clinic Originating from a Contaminated Commercial Anti-Fog Solution”. ''Canada Communicable Disease Report''. November, 2000. Vol. 26-21.]</ref>
'''
 
The [[genome]] is not segmented and consists of a single molecule of linear double-stranded DNA, ie. [[dsDNA]]. Sequence has the [[accession number]] [M93049]. The genome is 161,773 [[nucleotides]] long and has a central region of highly conserved enzymatic and structural genes that control essential viral functions. At both ends however, are terminal sequences with cross-linked single-stranded loops which form one continuous polynucleotide chain. These sequences include two copies of 12 genes which encode nonessential factors that affect the host's response to infection. These factors include [[serine proteinase]] inhibitors, such as SERP1, Serp2, and Serp3, and a scrapin. They are responsible for major [[histo-compatibility]] complex class I down regulation. Additionally, the genome has a guanine + cytosine content of approximately 40%. <ref>Cameron, C, Hota-Mitchell, S, Chen, L, Barrett, J, Cao, JX, Macaulay, C et al. (1999). The Complete DNA Sequence of Myxoma Virus. Virology 264: 298–318.</ref>


'''
==Application to Biotechnology==
[[Image:Myxoma Genome.jpg]]
''Pseudomonas putida'' is being used in conjunction with ''[[Escherichia coli]]'' for developing new drugs. This study focuses on [[myxochromide S]], a compound produced by ''Stigmatella aurantiaca'', but the method is revolutionary in that there is unprecedented expression of gene clusters. The beginnings of many new drugs are from natural sources, such as plants and microorganisms, but they are too expensive to harvest from the origin. [[Combinatorial biosynthesis]] has revolutionized drug development by allowing the structure of certain molecules to be changed within an organism. With this metabolic engineering, where genes are introduced and their expressions are tightly controlled, successful production of drugs is possible. ''Pseudomonas putida'' is unique in that it allows the expression of a large biosynthetic cluster, producing five times as much myxochromide S as ''Stigmatella aurantiaca''. This will also permit scientists to connect multiple clusters of genes onto a single DNA fragment. <ref>[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRP-4FSV963-2&_user=699469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000039278&_version=1&_urlVersion=0&_userid=699469&md5=0ae4bd35a20dd7aa05af430f4da09784 Bechthold, A. “Exploiting ''Pseudomonas putida'' for Drug Development”. ''Chemistry & Biology''. March, 2005. Vol. 12, Issue 3. p. 261]</ref>


== Interesting Features: ==
'''
Myxoma virus subverts the host immune response using two distinct viral mechanisms, each delivered by viral proteins. Most significantly, the virus produces encoded proteins known as [[viroceptors]] or [[virokines]] which mimic host receptors or [[cytokines]]. These viroceptors or virokines act to block extracellular immune signals, thereby providing effective clearance and producing a "virus friendly" environment. Secondly, the virus uses intracellular viral proteins to impede innate antiviral responses such as [[apoptosis]], and to thwart an infected cell's mechanisms to communicate with its immune system. Additionally, the [[M128L]] myxoma virus gene expresses a five-membrane spanning cell surface protein that has amino acid homology to cellular [[CD47]] proteins.  CD47 proteins are associated with determining leukocyte adhesion, motility, activation, and phagocytosis.  M128L is necessary for the production of a lethal infection in rabbits. However it is not essential for the dissemination of virus within the host. The M128L protein is a novel CD47-like immunomodulatory gene of myxoma virus required for full [[pathogenesis]] of the virus.  Without it, [[monocyte]] /[[macrophage]] activation is increased during infection.<ref>Iannello,A., Debbeche,O., Martin, E., Habiba Attalah, L., Samarani, S. and Ahmad, A., Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol. 2006 79: 16-35. </ref> <ref>Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A., McFadden, G..  Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology ,  2005  (Vol. 337)(No. 1) 55-67</ref>


'''
''Pseudomonas putida'' is able to purify [[fuel]], a capability that the petroleum industry has taken great interest in. As previously mentioned, ''P. putida'' is able to convert [[styrene]], a toxic waste product, into a biodegradable plastic. The strain [[CA-3]] turns styrene into a stored energy source, in the form of a plastic [[polymer]] called [[polyhydroxyalkanoate]] (PHA). Using styrene its only source of carbon and energy, the styrene is completely used up, creating an elastic type of polymer. This polymer can then be used in the production of drug carriers, plastic coating of cardboard, and medical implants.


== How does this organism cause disease? ==
==Current Research==
'''
Myxoma virus (MV) is a [[poxvirus]] and a prototypical member of the [[Leporipoxvirus]] genus. It is the causative agent of [[myxomatosis]], a lethal and severely deblilitating disease of European rabbits (Oryctolagus cuniculus).  The disease is characterized by systemic cellular [[immunosuppression]] which prompts respiratory complications and death. The myxoma virus encodes multiple proteins capable of [[downregulating]] the host innate and acquired immune responses. Other virus-encoded proteins enable replication in host [[lymphocytes]] and [[monocytes]] by inhibiting apoptosis. Specifically, Myxoma virus prevents [[apoptosis]] in [[RK-13]] cells and forms thick dermal lesions. MV encodes the virulence factor SERP2, a serine proteinase inhibitor.  Virulence may depend on inhibition of pro-inflammatory [[proteinases]] by SERP2.
However, notwithstanding the increasingly detailed molecular knowledge of myxoma virus, relatively little is known about the dynamics of the interaction of the virus with the integrated host-immune system during infection.<ref>MacNeill AL, Turner PC, Moyer RW, (2006) Mutation of the Myxoma virus SERP2 P1-site to prevent proteinase inhibition causes apoptosis in cultured RK-13 cells and attenuates disease in rabbits, but mutation to alter specificity causes apoptosis without reducing virulence.  Virology. 2006 Dec 5-20;356(1-2):12-22. Epub 2006 Sep 7</ref><ref>Kerr P, McFadden G. (2002) Immune responses to myxoma virus. Viral Immunol. 15(2):229-46.</ref>


'''
==== "Benzene, Toluene, and Xylene Biodegradation by ''Pseudomonas putida'' CCMI 852"====


== What makes it biologically interesting? ==
[[Gasoline]] spills create a large amount of toxic pollution in the environment, being that the major components are benzene, toluene and xylene isomers. Catalogued by the [[U.S Environmental Protection Agency]] as “priority pollutants”, gasoline is a main cause of water well and spring contamination. ''Pseudomonas putida'' can successfully degrade these dangerous components of gasoline, and can aide in the cleanup of such pollutants. This article discusses the research being done in order to determine what environment and mixture of compounds will allow for the most degradation. The [[metabolic]] pathway that ''P. putida'' uses to break down these compounds is investigated. The [[TOL]] pathway does not utilize benzene as a substrate, while the [[TOD]] pathway does. Various combinations of these elements of gasoline were used during experimentation. Maximum degradation occurred when each compound was alone in solution. Once any other compound was introduced, the rate automatically dropped, but it dropped most drastically when benzene was introduced. Toluene was degraded at a rate twice as fast as xylene. Benzene concentration always remained unchanged, when alone or in a mixture. It is then obvious that ''P. putida'' did not degrade benzene, even when no other compounds were present. It is suggested that this ''P. putida CCMI 852'' strain contains a TOL plasmid, therefore preventing the degradation of benzene. <ref>[http://www.scielo.br/pdf/bjm/v36n3/arq10.pdf Otenio, M.H., Da Silva, M.T.L., Marques, M.L.O, Roseiro, J.C., Bidoia, E.D. “Benzene, Toluene, and Xylene Biodegradation by ''Pseudomonas putida'' CCMI 852”. ''Brazilian Journal of Microbiology''. 2005. P. 258-261.]</ref>
'''
'''Its application to Biotechnology... its medical importance... major research findings made with it... what's cool about myxoma virus as an organism:'''


*Myxoma virus has potential as an [[oncolytic]] [[virotherapeutic]] agent against human malignant [[glioma]] because of: 1) the nonpathogenic nature of myxoma virus outside of its host, 2) its capacity to be genetically modified, 3) its ability to produce a long-lived infection in human tumor cells, and 4) the lack of preexisting antibodies in the human population.<ref>Yang, WQ, Lun, X, Palmer, CA, Wilcox, ME, Muzik, H, Shi, ZQ, Dyck, R, Coffey, M, Thompson, B, Hamilton, M, Nishikawa, S, Brasher, P, Fonseca, K, George, D, Rewcastle, NB, Johnston, R, Stewart, D, Lee, P, Senger, D, Forsyth, P, (2004) Efficacy and Safety Evaluation of Human Reovirus Type 3 in Immunocompetent Animals, Clinical Cancer Research Vol. 10, 8561-8576</ref><ref>Lun, X, Yang, W, Alain, T, Shi, ZQ, Muzik, H, Barrett, JW et al.(2005). Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res 65: 9982–9990.</ref>


*Myxoma virus selectively infects and kills human tumor cells.  This capability is linked to dysregulated intracellular signalling pathways found in the majority of human cancers.<ref>Lun, XQ, Zhou, H, Alain, T, Sun, B, Wang, L, Barrett, JW et al.(2007). Targeting human [[medulloblastoma]]: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67: 8818–8827.</ref>


*Myxoma virus appears to be an effective oncolytic agent against medulloblastoma. Whether used alone or in combination with rapamycin, myxoma virus was found to be effective and safe when used in experimental models of medulloblastoma in vitro and in vivo.  Nine out of 10 medulloblastoma cell lines tested were susceptible to lethal myxoma virus infection.  Additionally, it was found that the oncolytic potential myxoma virus was enhanced by combination therapy with [[signaling inhibitors]] that modulate activity of the [[phosphatidylinositol 3-kinase/Akt pathway]]. Apparently, the susceptibility of human cancer cells to be infected and killed by an oncolytic poxvirus, myxoma virus (MV), is related to the basal level of endogenous phosphorylated Akt.<ref>Lun, XQ, Zhou, H, Alain, T, Sun, B, Wang, L, Barrett, JW et al.(2007). Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67: 8818–8827.</ref>
==== "Diversity and activity of biosurfactant-producing ''Pseudomonas'' in the rhizosphere of black pepper in Vietnam"====


*All [[rhabdoid]] tumor cell lines tested in vitro were found to be susceptible to lethal infections by myxoma virus. Intraturmoral injection of live MV substantially reduced the size of subcutaneous rhabdoid tumor xenografts compared with control animals.<ref>Wu Y, Lun X, Zhou H, Wang L, Sun B, Bell JC, Barrett JW, McFadden G, Biegel JA, Senger DL, Forsyth PA.Authors' Affiliations: Departments of Oncology, Clinical Neurosciences, and Biochemistry and Molecular Biology, University of Calgary, the Tom Baker Cancer Centre, and the Clark H. Smith Brain Tumour Research Centre, Calgary, Alberta, Canada. Clinical Cancer Research, 2008 Feb 15;14(4):1218-27.</ref>
[[Black pepper]], a major crop and source of income for the country of [[Vietnam]], is also the most important spice crop in the world. This ‘King of Spices’ is particularly susceptible to the pathogen ''[[Phytophthora capsici]]'', which eats away at the roots of the plant and causes death and disease. It can potentially cause up to 40-50% of crop death, and in Vietnam an annual loss of around 20%. ''Pseudomonas putida'' was found to produce [[biosurfactant]]s, which disrupt the membrane of the ''Phy. Capsici'' zoospores, causing death within minutes. Using ''P. putida'' as a method for controlling ''Phy. Capsici'' will be more effective than using pure biosurfactants created in a lab. One reason for this is that the chemical form may not be delivered efficiently to the roots, because they must fully penetrate the soil to the level of the rhizosphere. ''P. putida'' is chemotactic towards root output, and move via flagella directly toward the root, subsequently creating secure colonies. Using ''P. putida'' as a [[pesticide]] will also be a long-lasting form of treatment, because the colonies not will get washed away by a rainstorm like the chemical form could.  


*Myxoma virus has been used successfully to treat human glioma xenografts in [[immunodeficient]] miceSeveral mouse tumor cell lines, including B16 [[melanomas]], are permissive of MV infection.  Multiple intratumoral injections of MV resulted in substantial tumor growth inhibition.  Moreover, with systemic injection of MV in a lung [[metastasis]] model with [[B16F10LacZ]] cells substantially reduced lung tumors.<ref>Stanford, MM, Shaban, M, Barrett, J, Werden, SJ, Gilbert, PA, Bondy-Denomy, J, MacKenzie, L, Graham, K, Chambers, F, and McFadden, G, Myxoma Virus Oncolysis of Primary and Metastatic B16F10 Mouse Tumors In Vivo. Molecular Therapy (2007) 16 1, 52–59.</ref>
[[Rhizosphere]] samples were taken from three different districts in Vietnam, and various testing was done with different biosurfactanct producing organisms and bacteria. ''P. putida'' provided a significant amount of prevention of plant wilt, providing adequate protection from ''Phy. capsici''This was greater then when contrasted with other bacteria tested, such as ''[[Bacillus spp.]]'', ''[[Trichoderma harzianum]]'', and ''[[P. flourescens]]''. When ''P. putida'' was introduced to plant root when no pathogen was present, there were more interesting results. This bacterium had considerably increased shoot height and weight, and also raised the number of roots grown. More research is being done in the area, as it further development of this idea will help control plant pathogens. <ref>[http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2672.2007.03618.x Tran, H., Kruijt, M., Raaijmakers, J.M. “Diversity and Activity of Biosurfactant-producing ''Pseudomonas'' in the Rhizosphere of Black Pepper in Vietnam”. ''Journal of Applied Microbiology''. March, 2008. Vol. 104. p. 839-851.]</ref>  


'''
==== "Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by ''Pseudomonas putida'' CA-3" ====


== Current Research: ==
''Pseudomonas putida'' has the unique ability to transform a toxic pollutant into a biodegradable plastic. Over 25 million kilograms of [[styrene]], a compound that can cause respiratory tract infection, muscle weakness, and narcosis, is released into the environment every year in the U.S. alone. The product, [[polyhydroxyalkanoate]], can be used as synthons for certain [[antibiotics]], [[vitamins]], and anti-cancer drugs. They are also used in other areas of medical applications such as tissue engineering and wound management. The pathway and mechanism for this transformation is investigated, where [[aromatic]] hydrocarbons are transformed into [[aliphatic]] PHA. During the growth cycle, there is the strict use of carbon and nitrogen with styrene, glucose, and phenylacetic acid by ''P. putida'' as the carbon and energy source. The effects of altering the carbon to nitrogen ratio and level are tested in relation to the accumulation of the product PHA.  
'''
'''Myxoma Virus Oncolysis of Primary and Metastatic B16F10 Mouse Tumors In Vivo'''<ref>Stanford, MM, Shaban, M, Barrett, J, Werden, SJ, Gilbert, PA, Bondy-Denomy, J, MacKenzie, L, Graham, K, Chambers, F, and McFadden, G, Myxoma Virus Oncolysis of Primary and Metastatic B16F10 Mouse Tumors In Vivo. Molecular Therapy (2007) 16 1, 52–59.</ref>
This paper investigates the effectiveness of myxoma virus (MV) in treating primary and metastatic mouse tumors in immunocompetent C57BL6 mice. The authors found several mouse tumor cell lines, including B16 melanomas, to be permissive to MV infection. They used B16F10 cells to assess MV replication and efficacy in genetically similar primary tumor and metastatic models in vivo. Multiple intratumoral injections of MV caused substantial inhibition of tumor growth.  Moreover, systemic administration of MV in a lung metastasis model with B16F10LacZ cells dramatically reduced lung tumors.  Of particular note, a combination therapy of MV with rapamycin reduced both the size and number of lung metastases, as well as the induced antiviral neutralizing antibody titres. This study demonstrates that MV is capable of targeting and destroying tumors while causing no significant disease or collateral tissue infection in an immunocompetent host. Moreover when MV is combined rapamycin, the potential of MV is significant in oncolytic cancer therapy.


'''Oncolytic efficacy of recombinant vesicular stomatitis virus and myxoma virus in experimental models of rhabdoid tumors.'''<ref>Wu Y, Lun X, Zhou H, Wang L, Sun B, Bell JC, Barrett JW, McFadden G, Biegel JA, Senger DL, Forsyth PA.Authors' Affiliations: Departments of Oncology, Clinical Neurosciences, and Biochemistry and Molecular Biology, University of Calgary, the Tom Baker Cancer Centre, and the Clark H. Smith Brain Tumour Research Centre, Calgary, Alberta, Canada. Clinical Cancer Research, 2008 Feb 15;14(4):1218-27.</ref>
The study showed that when nitrogen levels dropped, PHA production began. The effect of carbon supply was studied as well, and only when carbon to nitrogen ratios of 9:1 for cells on glucose, 10:1 for cells on phenylacetic acid, and 14:1 for cells grown on styrene were reached did PHA begin to accumulate. Next, nitrogen was manipulated while carbon was held constant, showing that the highest PHA content was found when nitrogen concentration was the lowest.  
This paper investigates the therapeutic potential of two oncolytic viruses, myxoma virus (MV) and an attenuated vesicular stomatitis virus (VSV(DeltaM51)) in models of human rhabdoid tumor.  Rhabdoid tumors are highly aggressive pediatric tumors that are typically unsusceptible to treatment. In this experiment, four human rhabdoid tumor cell lines were cultured in vitro and treated with live or inactivated control virus. At various times after infection, the cytopathic effect, the viral gene expression, the infectious viral titers, and cell viability were measured. However, to gain insight into viral oncolysis in vivo, human rhabdoid tumor cells were implanted subcutaneously or intracranially in CD-1 nude mice, which were then treated with intratumoral or i.v. injections of live or UV-inactivated virus. 
In terms of results: 1) all in vitro rhabdoid tumor cell lines were susceptible to lethal infections by MV and VSV(DeltaM51); and 2)Intratumoral injection of live MV or VSV(DeltaM51) reduced the size of s.c. rhabdoid tumor xenografts "dramatically" when compared with control animals. Consequently, these results indicate  that VSV(DeltaM51) and MV have potential as novel therapies against human rhabdoid tumor.


'''Oncolytic Virotherapy Synergism with Signaling Inhibitors: Rapamycin Increases Myxoma Virus Tropism for Human Tumor Cells'''<ref>Marianne M. Stanford, John W. Barrett, Steven H. Nazarian, Steven Werden, and Grant McFadden* Biotherapeutics Research Group, Robarts Research Institute, and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6G 2V4, Canada Journal of Virology, 2007 February; 81(3): 1251–1260.</ref>
The manner in which styrene is converted to PHA is through [[fatty acid de novo biosynthesis]], which is catalyzed by [[3-hydroxy-acyl-ACP:CoA transacylase]]. The plastic polymer has a destruction point of 265 degrees Celcius, and a uniquely low molecular weight and high [[polydispersity]]. This is also the first time that an aromatic substrate is converted into aliphatic PHA. Further research will be done to investigate ways to increase PHA yield from styrene using ''P. putida''.<ref>[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1082534 Ward, Patrick G., de Roo, Guy, O’Connor, Kevin E. “Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by ''Pseudomonas putida'' CA-3”. ''Applied and Environmental Microbiology''. April, 2005. Vol. 71. p. 2046-2052.]</ref>
This paper investigates the effect of treating non-permissive human tumor cell lines, which usually restrict myxoma virus replication, with rapamycin.  Aside from being a rabbit-specific poxvirus pathogen, myxoma virus also has a unique tropism for human tumor cells and is substantially oncolytic for human cancer xenografts. Apparently most tumor cell lines are permissive for myxoma infection as a consequence of activation of Akt kinase.  M-T5, a range factor of myxoma virus, directly interacts with Akt and mediates myxoma virus tumor cell tropism. Rapamycin specifically inhibits mTOR, a regulator of cell growth and metabolism downstream of Akt. Non-permissive human tumor cell lines were treated with rapamycin. The result was a dramatic increase in virus tropism and transmission in vitro. This increased myxoma replication occurred correspondingly with the effects on mTOR signaling, specifically, an increase in Akt kinase. However, in contrast, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with active Akt. This finding is significant in that it indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to be optimal for virus replication.  It also suggests that a potentially therapeutic synergy exists between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.


'''
==References==
'''Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin.'''<ref>Lun XQ, Zhou H, Alain T, Sun B, Wang L, Barrett JW, Stanford MM, McFadden G, Bell J, Senger DL, Forsyth PA. Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada. Cancer Research, 2007 Sep 15;67(18):8818-27.</ref>
This paper investigates and demonstrates that myxoma virus either used alone or in combination with rapamycin is effective and safe experimental models of medulloblastoma in vitro and in vivo.  Nine out of 10 medulloblastoma cell lines tested were found to be susceptible to lethal myxoma virus infection.  However, pretreatment of medulloblastoma cells with rapamycin increased the extent of oncolysis in vitro. In terms of experimental protocal, intratumoral injection of live myxoma virus prolonged survival in D341 and Daoy orthotopic human medulloblastoma xenograft mouse models as compared to the inactivated virus control. Pretreatment with rapamycin increased the extent of viral oncolysis, effectively "curing" most Daoy tumor-bearing mice and reducing or eliminating spinal cord and ventricle metastases. Moreover, rapamycin enhanced tumor-specific myxoma virus replication in vivo and prolonged survival of D341 tumor-bearing mice. Significantly, rapamycin increased the levels of activated Akt in Daoy and D341 cells, a finding that susgests an explanation for its ability to enhance myxoma virus oncolysis. In sum, these findings suggest: 1) that myxoma virus may be an effective oncolytic agent against medulloblastoma, and 2) that therapy with signaling inhibitors that affect the phosphatidylinositol 3-kinase/Akt pathway will further enhance the oncolytic potential of myxoma virus.


== References: ==
[1]↑[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRP-4FSV963-2&_user=699469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000039278&_version=1&_urlVersion=0&_userid=699469&md5=0ae4bd35a20dd7aa05af430f4da09784 Bechthold, A. “Exploiting ''Pseudomonas putida'' for Drug Development”. ''Chemistry & Biology''. March, 2005. Vol. 12, Issue 3. p. 261]
<references/>
 
'''  
[2]↑[http://www.springerlink.com/content/278654l42x54x7k7/ Dervisoglue, E., Dundar, D.O., Yegenaga, I., Willke, A. “Peritonitis due to ''Pseudomonas putida'' in a Patient Receiving Automated Peritoneal Dialysis”. ''Infection''. 2007.]
*Barrett, JW, Sypula, J, Wang, F, Alston, LR, Shao, Z, Gao, X et al.(2007). M135R is a novel cell surface virulence factor of myxoma virus. J Virol 81: 106–114.
 
*Cameron, C, Hota-Mitchell, S, Chen, L, Barrett, J, Cao, JX, Macaulay, C et al. (1999). The Complete DNA Sequence of Myxoma Virus. Virology 264: 298–318.
[3]↑[http://www.scielo.br/pdf/bjm/v36n3/arq10.pdf Otenio, M.H., Da Silva, M.T.L., Marques, M.L.O, Roseiro, J.C., Bidoia, E.D. “Benzene, Toluene, and Xylene Biodegradation by ''Pseudomonas putida'' CCMI 852”. ''Brazilian Journal of Microbiology''. 2005. P. 258-261.]
*Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A., McFadden, G..  Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology, 2005 (Vol. 337)(No. 1) 55-67
 
*Duteyrata, J. et al., (2001) Ultrastructural morphogenesis study of myxoma virus replication cycle. Biology of the Cell 93  349–361.
[4]↑[http://www.phac-aspc.gc.ca/publicat/ccdr-rmtc/00vol26/dr2621eb.html Romney, M., Sherlock, C., Stephens ,G., Clarke, A.. “Pseudo-outbreak of ''Pseudomonas Putida'' in a Hospital Outpatient Clinic Originating from a Contaminated Commercial Anti-Fog Solution”. ''Canada Communicable Disease Report''. November, 2000. Vol. 26-21.]
*Fenner, F. (2000). Adventures with poxviruses of vertebrates. FEMS Microbiol Rev 24: 123–133.
 
*Iannello,A., Debbeche,O., Martin, E., Habiba Attalah, L., Samarani, S. and Ahmad, A., Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol. 2006 79: 16-35.  
 
*Kerr P, McFadden G. (2002) Immune responses to myxoma virus. Viral Immunol. 15(2):229-46.
[5]↑[http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2672.2007.03618.x Tran, H., Kruijt, M., Raaijmakers, J.M. “Diversity and Activity of Biosurfactant-producing ''Pseudomonas'' in the Rhizosphere of Black Pepper in Vietnam”. ''Journal of Applied Microbiology''. March, 2008. Vol. 104. p. 839-851.]
*Labudovic, A., Perkins, H. van Leeuwen, B. and Kerr, P. (2004) Sequence mapping of the Californian MSW strain of Myxoma virus. Archives of Virology, Vol. 149, Number 3/March, 553-570.
 
*Lun,X, Yang,W, Alain,T, Shi,ZQ, Muzik,H, Barrett,JW et al.(2005). Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res 65: 9982–9990.  
 
*Lun, XQ, Zhou, H, Alain, T, Sun, B, Wang, L, Barrett, JW et al.(2007). Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67: 8818–8827.
[6]↑[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1082534 Ward, Patrick G., de Roo, Guy, O’Connor, Kevin E. “Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by ''Pseudomonas putida'' CA-3”. ''Applied and Environmental Microbiology''. April, 2005. Vol. 71. p. 2046-2052.]
*MacNeill AL, Turner PC, Moyer RW, (2006) Mutation of the Myxoma virus SERP2 P1-site to prevent proteinase inhibition causes apoptosis in cultured RK-13 cells and attenuates disease in rabbits, but mutation to alter specificity causes apoptosis without reducing virulence. Virology. 2006 Dec 5-20;356(1-2):12-22. Epub 2006 Sep 7.
 
*Stanford, MM, Shaban, M, Barrett, J, Werden, SJ, Gilbert, PA, Bondy-Denomy, J, MacKenzie, L, Graham, K, Chambers, F, and McFadden, G, Myxoma Virus Oncolysis of Primary and Metastatic B16F10 Mouse Tumors In Vivo. Molecular Therapy (2007) 16 1, 52–59.
 
*Stanford, MM, Barrett, JW, Nazarian, SH, Werden, S and McFadden, G. (2007). Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. Journal of Virology, 81: 1251–1260.
[7]↑[http://www1.qiagen.com/literature/Posters/PDF/DNA_isolation/1014161SPOS_SEQ_0400.pdf| DNA isolation, from Qiagen]
*Stanford, MM, Werden, SJ and McFadden, G. (2007). Myxoma virus in the European rabbit: interactions between the virus and its susceptible host. Vet Res 38: 299–318
 
*Stanford‌, MM, and McFadden, G. (2007) Myxoma virus and oncolytic virotherapy: a new biologic weapon in the war against cancer. Expert Opinion on Biological Therapy, Vol. 7, No. 9, Pages 1415-1425.
[8]↑[http://microbewiki.kenyon.edu/index.php/Pseudomonas_putida]
*Sypula, J, Wang, F, Ma, Y, Bell, JC and McFadden, G. (2004). Myxoma virus tropism in human tumor cells. Gene Ther Mol Biol 8: 108–114.
*Wang, G, Barrett, JW, Stanford, M, Werden, SJ, Johnston, JB, Gao, X et al.(2006). Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci USA 103: 4640–4645.
*Wang G, Barrett JW, Stanford M, Werden SJ, Johnston JB, Gao X, Sun M, Cheng JQ, McFadden G. Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4640-5. Epub 2006 Mar 14.
*Yang, WQ, Lun, X, Palmer, CA, Wilcox, ME, Muzik, H, Shi, ZQ, Dyck, R, Coffey, M, Thompson, B, Hamilton, M, Nishikawa, S, Brasher, P, Fonseca, K, George, D, Rewcastle, NB, Johnston, R, Stewart, D, Lee, P, Senger, D, Forsyth, P, (2004) Efficacy and Safety Evaluation of Human Reovirus Type 3 in Immunocompetent Animals, Clinical Cancer Research Vol. 10, 8561-8576

Revision as of 00:30, 21 April 2009

All unapproved Citizendium articles may contain errors of fact, bias, grammar etc. A version of an article is unapproved unless it is marked as citable with a dedicated green template at the top of the page, as in this version of the 'Biology' article. Citable articles are intended to be of reasonably high quality. The participants in the Citizendium project make no representations about the reliability of Citizendium articles or, generally, their suitability for any purpose.

Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project in the framework of a course entitled Microbiology 201 at Queens College, CUNY. The course homepage can be found at CZ:Biol 201: General Microbiology.
For the course duration, the article is closed to outside editing. Of course you can always leave comments on the discussion page. The anticipated date of course completion is May 21, 2009. One month after that date at the latest, this notice shall be removed.
Besides, many other Citizendium articles welcome your collaboration!



This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Pseudomonas putida
Scientific classification
Kingdom: Eubacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species: putida
Binomial name
Pseudomonas putida

Description and significance

Pseudomonas putida are Gram-negative rod-shaped bacteria. They are classified as Group 1 in Pseudomona. Other Pseudomonads are being re-evaluated to see if they truly fall into this category, while P. putida is firmly place in this group. P. putida are flourescent, aerobic, non sporeforming, oxidase positive bacteria. Having one or more polar flagella, they are motile organisms. They can be found in moist environments, such as soil and water, and grow optimally at room temperature. Certain strains have the ability to grow on and break down many dangerous pollutants and aromatic hydrocarbons such as toluene, benzene, and ethylbenzene. P. putida can also be used in petroleum plants to purify fuel. This bacterium is also capable of promoting plant growth after root colonization as well as simultaneously providing protection for the plant from pests and other harmful bacteria.

Genome structure

The genome of Pseudomonas putida was sequenced due to the many unique abilities that this bacterium possesses. Scientists are interested in which genes cause what function. So far, P. putida has the most genes of any microorganism that break down chemicals such as aromatic hydrocarbons. Research is being done on the difference in genome of P. putida and its relative Pseudomonas aeruginosa in relation to cystic fibrosis. While P. aeruginosa infects and kills those with the disease, P. putida lacks the genes that causes such destruction, like the genes that code for enzymes that digest cell membranes.


The Pseudomonas putida strain KT2440 genome was sequenced as a joint project between The Institute for Genomic Research and a German consortium in 1999. The way that they sequenced the genome was using the random shotgun method. They found that the one circular chromosome contains 6,181,863 base pairs. The total number of genes is 5,516, with 5,421 being protein coding. The total number of repeats, or stretches greater than 200 base pairs and almost identical, was 398. Interestingly, there was a high GC content in the genome, which created some difficulty in sequencing through the traditional methods. A significant amount of genes were found to code for enzymes that are used in the decomposition of matter. Most of the other genes are critical for Pseudomonas putida’s ability to recognize and react to external toxins and chemical signals. They also contain multiple accessory plasmids, including TOL and OCT plasmids, that aide the bacterium in breaking down environmental pollutants found in soil and water. Through sequencing the Pseudomonas putida genome, scientists were able to determine the biotechnological potential of the organism.[1]

Cell structure and metabolism

Pseudomonas putida are aerobic oxidase positive bacteria, with one or more flagella. They can be found in moist environments, such as soil and water, and grow at a temperature of 25-30 degrees Celcius. Although Pseudomonas putida does not form spores, they are still able to withstand harsh environmental conditions. It is able to resist the severe effects of organic solvents that pollute the surrounding soil. In response to changes in its chemical surroundings and to help with membrane fluidity and cellular uptake, it can alter the degree of fatty acid saturation and even undergo cis-trans isomerization. P. putida are unique saprobes in that use a wide variety of non-living material as their source of nutrition, including multiple types of aromatic hydrocarbons. This allows them to be agents of bioremediation, one of the most differentiating and impressive features of Pseudomonas putida.

Ecology

Pseudomonas putida has an incomparable effect on the environment. They are able to protect plants from pests, promote plant growth, and clean up organic pollutants found in soil and water.

The surface of the root and the soil that surrounds it are loaded with nutrients released by the plant. This environment is optimal for microbial growth. Pseudomonas putida is attracted to this area, and in turn promotes plant growth and even protects the root against pathogens. Two key elements that allow P. putida to attach in the first place is that they are motile and chemotactic towards the root output. After the initial attraction and migration toward the root, the bacteria immediately begins to grow and divide, forming multiple colonies around the root. The maximum population size is directly related to root weight, and once it is reached the number of colonies will stay constant. All of this can happen in less than 48 hours!

Pseudomonas putida play a huge role in bioremediation, or the removal or naturalization of soil or water contaminants. They can degrade toluene, xylene, and benzene, which are all toxic components of gasoline that leak into the soil by accidental spills. Other strains can convert styrene, better known as packing peanuts, which do not degrade naturally, into the biodegradable plastic polyhydroxyalkanoate (PHA). Methods used to get rid of styrene include incinerating it, spreading it on land, and injecting it underground, all of which release the toxins into the environment. Styrene can cause muscle weakness, lung irritation, and may even effect the brain and nervous system. Due to the fact that P. putida can use styrene as its only source of carbon and energy, it can completely remove this toxic chemical. P. putida can also turn Atrizine, an herbicide that is toxic to wildlife, into carbon dioxide and water.

Pathology

In genetic terms, Pseudomonas putida is very similar to strains of Pseudomonas aeruginosa, an opportunistic human pathogen. Although there is a considerable amount of genome conservation, P. putida seems to be missing the key virulent segments that P. aeroginosa has. Being a non-pathogenic bacteria, there has been only a handful of episodes where P. putida has infected humans. For the most part, it has been with immunocompromised patients, causing septicaemia, pneumonia, urinary tract infections, nosocomial bacteremia, septic arthritis, or peritonitis. P. putida is also closely related to Pseudomonas syringae, an abundant plant pathogen, but again it lacks the gene that causes such disease.

Several cases of disease caused by Pseudomonas putida have been investigated, being that the bacterium rarely colonizes mucosal surfaces or skin. One case was a 43-year-old female who was receiving nightly peritoneal dialysis treatments following a laparoscopic ovarian cyst operation. She developed peritonitis due to infection by Pseudomonas putida. Through this case and others, it was determined that risk factors for developing such an infection include the insertion of catheters, intubation, and/or intravascular devices following a recent course in antibiotics. [2]

Another case of Pseudomonas putida infection was found in ten patients in and ear, nose, and throat outpatient clinic during the summer of 2000. All ten patients had chronic sinusitis, making them more susceptible to infection due to their challenged immune systems. Through investigation, it was discovered that all of the patients shared the same examination room. The source of the bacteria was from a contaminated bottle of StaKleer found in that room. StaKleer is an anti-fog solution used on mirrors and endoscopes to prevent condensation from occurring, allowing for the proper visualization of tissues. Other unopened bottles of the solution at the clinic were found to be contaminated with Pseudomonas putida as well.[3]

Application to Biotechnology

Pseudomonas putida is being used in conjunction with Escherichia coli for developing new drugs. This study focuses on myxochromide S, a compound produced by Stigmatella aurantiaca, but the method is revolutionary in that there is unprecedented expression of gene clusters. The beginnings of many new drugs are from natural sources, such as plants and microorganisms, but they are too expensive to harvest from the origin. Combinatorial biosynthesis has revolutionized drug development by allowing the structure of certain molecules to be changed within an organism. With this metabolic engineering, where genes are introduced and their expressions are tightly controlled, successful production of drugs is possible. Pseudomonas putida is unique in that it allows the expression of a large biosynthetic cluster, producing five times as much myxochromide S as Stigmatella aurantiaca. This will also permit scientists to connect multiple clusters of genes onto a single DNA fragment. [4]


Pseudomonas putida is able to purify fuel, a capability that the petroleum industry has taken great interest in. As previously mentioned, P. putida is able to convert styrene, a toxic waste product, into a biodegradable plastic. The strain CA-3 turns styrene into a stored energy source, in the form of a plastic polymer called polyhydroxyalkanoate (PHA). Using styrene its only source of carbon and energy, the styrene is completely used up, creating an elastic type of polymer. This polymer can then be used in the production of drug carriers, plastic coating of cardboard, and medical implants.

Current Research

"Benzene, Toluene, and Xylene Biodegradation by Pseudomonas putida CCMI 852"

Gasoline spills create a large amount of toxic pollution in the environment, being that the major components are benzene, toluene and xylene isomers. Catalogued by the U.S Environmental Protection Agency as “priority pollutants”, gasoline is a main cause of water well and spring contamination. Pseudomonas putida can successfully degrade these dangerous components of gasoline, and can aide in the cleanup of such pollutants. This article discusses the research being done in order to determine what environment and mixture of compounds will allow for the most degradation. The metabolic pathway that P. putida uses to break down these compounds is investigated. The TOL pathway does not utilize benzene as a substrate, while the TOD pathway does. Various combinations of these elements of gasoline were used during experimentation. Maximum degradation occurred when each compound was alone in solution. Once any other compound was introduced, the rate automatically dropped, but it dropped most drastically when benzene was introduced. Toluene was degraded at a rate twice as fast as xylene. Benzene concentration always remained unchanged, when alone or in a mixture. It is then obvious that P. putida did not degrade benzene, even when no other compounds were present. It is suggested that this P. putida CCMI 852 strain contains a TOL plasmid, therefore preventing the degradation of benzene. [5]


"Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam"

Black pepper, a major crop and source of income for the country of Vietnam, is also the most important spice crop in the world. This ‘King of Spices’ is particularly susceptible to the pathogen Phytophthora capsici, which eats away at the roots of the plant and causes death and disease. It can potentially cause up to 40-50% of crop death, and in Vietnam an annual loss of around 20%. Pseudomonas putida was found to produce biosurfactants, which disrupt the membrane of the Phy. Capsici zoospores, causing death within minutes. Using P. putida as a method for controlling Phy. Capsici will be more effective than using pure biosurfactants created in a lab. One reason for this is that the chemical form may not be delivered efficiently to the roots, because they must fully penetrate the soil to the level of the rhizosphere. P. putida is chemotactic towards root output, and move via flagella directly toward the root, subsequently creating secure colonies. Using P. putida as a pesticide will also be a long-lasting form of treatment, because the colonies not will get washed away by a rainstorm like the chemical form could.

Rhizosphere samples were taken from three different districts in Vietnam, and various testing was done with different biosurfactanct producing organisms and bacteria. P. putida provided a significant amount of prevention of plant wilt, providing adequate protection from Phy. capsici. This was greater then when contrasted with other bacteria tested, such as Bacillus spp., Trichoderma harzianum, and P. flourescens. When P. putida was introduced to plant root when no pathogen was present, there were more interesting results. This bacterium had considerably increased shoot height and weight, and also raised the number of roots grown. More research is being done in the area, as it further development of this idea will help control plant pathogens. [6]

"Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by Pseudomonas putida CA-3"

Pseudomonas putida has the unique ability to transform a toxic pollutant into a biodegradable plastic. Over 25 million kilograms of styrene, a compound that can cause respiratory tract infection, muscle weakness, and narcosis, is released into the environment every year in the U.S. alone. The product, polyhydroxyalkanoate, can be used as synthons for certain antibiotics, vitamins, and anti-cancer drugs. They are also used in other areas of medical applications such as tissue engineering and wound management. The pathway and mechanism for this transformation is investigated, where aromatic hydrocarbons are transformed into aliphatic PHA. During the growth cycle, there is the strict use of carbon and nitrogen with styrene, glucose, and phenylacetic acid by P. putida as the carbon and energy source. The effects of altering the carbon to nitrogen ratio and level are tested in relation to the accumulation of the product PHA.

The study showed that when nitrogen levels dropped, PHA production began. The effect of carbon supply was studied as well, and only when carbon to nitrogen ratios of 9:1 for cells on glucose, 10:1 for cells on phenylacetic acid, and 14:1 for cells grown on styrene were reached did PHA begin to accumulate. Next, nitrogen was manipulated while carbon was held constant, showing that the highest PHA content was found when nitrogen concentration was the lowest.

The manner in which styrene is converted to PHA is through fatty acid de novo biosynthesis, which is catalyzed by 3-hydroxy-acyl-ACP:CoA transacylase. The plastic polymer has a destruction point of 265 degrees Celcius, and a uniquely low molecular weight and high polydispersity. This is also the first time that an aromatic substrate is converted into aliphatic PHA. Further research will be done to investigate ways to increase PHA yield from styrene using P. putida.[7]

References

[1]↑Bechthold, A. “Exploiting Pseudomonas putida for Drug Development”. Chemistry & Biology. March, 2005. Vol. 12, Issue 3. p. 261

[2]↑Dervisoglue, E., Dundar, D.O., Yegenaga, I., Willke, A. “Peritonitis due to Pseudomonas putida in a Patient Receiving Automated Peritoneal Dialysis”. Infection. 2007.

[3]↑Otenio, M.H., Da Silva, M.T.L., Marques, M.L.O, Roseiro, J.C., Bidoia, E.D. “Benzene, Toluene, and Xylene Biodegradation by Pseudomonas putida CCMI 852”. Brazilian Journal of Microbiology. 2005. P. 258-261.

[4]↑Romney, M., Sherlock, C., Stephens ,G., Clarke, A.. “Pseudo-outbreak of Pseudomonas Putida in a Hospital Outpatient Clinic Originating from a Contaminated Commercial Anti-Fog Solution”. Canada Communicable Disease Report. November, 2000. Vol. 26-21.


[5]↑Tran, H., Kruijt, M., Raaijmakers, J.M. “Diversity and Activity of Biosurfactant-producing Pseudomonas in the Rhizosphere of Black Pepper in Vietnam”. Journal of Applied Microbiology. March, 2008. Vol. 104. p. 839-851.


[6]↑Ward, Patrick G., de Roo, Guy, O’Connor, Kevin E. “Accumulation of Polyhydroxyalkanoate from Styrene and Phenylacetic Acid by Pseudomonas putida CA-3”. Applied and Environmental Microbiology. April, 2005. Vol. 71. p. 2046-2052.


[7]↑DNA isolation, from Qiagen

[8]↑[1]